研究業績
国際会議
- Yuragi Learning: A Brain-Inspired Decision-Making Framework for Green AI Applications
Tatsuya Otoshi, Shin'ichi Arakawa, Tetsuya Shimokawa, Toshiyuki Kanoh, Masayuki Murata
International Joint Conference on Neural Network 2025 Workshop: Green Federated Learning: Toward Sustainable AI for a Decentralized Future(IJCNN), (2025年6月)
- Power Efficient Edge-Cloud Cooperation by Value-Sensitive Bayesian Attractor Model
Tatsuya Otoshi, Hideyuki Shimonishi, Tetsuya Shimokawa, Masayuki Murata
IEEE INFOCOM 2024-IEEE Conference on Computer Communication Workshops (INFOCOM WKSHPS), (2024年3月)
DOI: 10.1109/INFOCOMWKSHPS61880.2024.10620748
- Hierarchical Bayesian Attractor Model for Dynamic Task Allocation in Edge-Cloud Computing
Tatsuya Otoshi, Masayuki Murata, Hideyuki Shimonishi, Tetsuya Shimokawa
2023 International Conference on Computing, Networking and Communications(ICNC), (2023年2月)
DOI: 10.1109/ICNC57223.2023.10073977
- Non-Parametric Decision-Making by Bayesian Attractor Model for Dynamic Slice Selection
Tatuya Otoshi, Shin'ichi Arakawa, Masayuki Murata, Takeo Hosomi
2021 IEEE Global Communications Conference (GLOBECOM), (2021年12月)
DOI: 10.1109/GLOBECOM46510.2021.9685972
- Flexible Updating of Attractors in Virtual Network Topology Control with Bayesian Attractor Model
Tatuya Otoshi, Shin'ichi Arakawa, Masayuki Murata, Kai Wang, Takeo Hosomi, Toshiyuki Kanoh
ICC 2021-IEEE International Conference on Communications, (2021年7月)
DOI: 10.1109/ICC42927.2021.9500282
論文
Book Chapter
- Fluctuation-Induced Network Control and Learning: Applying the Yuragi Principle of Brain and Biological Systems
(Eds. Masayuki Murata and Kenji Leibnitz), pp.113-134, pp 199-212, pp213-232, Springer, (2021年4月)
Shin'ichi Arakawa, Tatsuya Otoshi, Toshiyuki Kanoh,
ISBN: 981334976X, 9789813349766
|