研究業績


国際会議

  • Yuragi Learning: A Brain-Inspired Decision-Making Framework for Green AI Applications
    Tatsuya Otoshi, Shin'ichi Arakawa, Tetsuya Shimokawa, Toshiyuki Kanoh, Masayuki Murata
    International Joint Conference on Neural Network 2025 Workshop: Green Federated Learning: Toward Sustainable AI for a Decentralized Future(IJCNN), (2025年6月)

  • Power Efficient Edge-Cloud Cooperation by Value-Sensitive Bayesian Attractor Model
    Tatsuya Otoshi, Hideyuki Shimonishi, Tetsuya Shimokawa, Masayuki Murata
    IEEE INFOCOM 2024-IEEE Conference on Computer Communication Workshops (INFOCOM WKSHPS), (2024年3月)
    DOI: 10.1109/INFOCOMWKSHPS61880.2024.10620748

  • Hierarchical Bayesian Attractor Model for Dynamic Task Allocation in Edge-Cloud Computing
    Tatsuya Otoshi, Masayuki Murata, Hideyuki Shimonishi, Tetsuya Shimokawa
    2023 International Conference on Computing, Networking and Communications(ICNC), (2023年2月)
    DOI: 10.1109/ICNC57223.2023.10073977

  • Non-Parametric Decision-Making by Bayesian Attractor Model for Dynamic Slice Selection
    Tatuya Otoshi, Shin'ichi Arakawa, Masayuki Murata, Takeo Hosomi
    2021 IEEE Global Communications Conference (GLOBECOM), (2021年12月)
    DOI: 10.1109/GLOBECOM46510.2021.9685972

  • Flexible Updating of Attractors in Virtual Network Topology Control with Bayesian Attractor Model
    Tatuya Otoshi, Shin'ichi Arakawa, Masayuki Murata, Kai Wang, Takeo Hosomi, Toshiyuki Kanoh
    ICC 2021-IEEE International Conference on Communications, (2021年7月)
    DOI: 10.1109/ICC42927.2021.9500282


論文



Book Chapter

  • Fluctuation-Induced Network Control and Learning: Applying the Yuragi Principle of Brain and Biological Systems
    (Eds. Masayuki Murata and Kenji Leibnitz), pp.113-134, pp 199-212, pp213-232, Springer, (2021年4月)
    Shin'ichi Arakawa, Tatsuya Otoshi, Toshiyuki Kanoh,
    ISBN:  981334976X, 9789813349766